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Abstract

The paper is focused on optimization of prestress and placement of fibers in laminated cylindrical composites. It also

involves a stochastic study of prestress deviation in particular layers. Optimization (design) parameters considered in

control of internal stresses are the eigenstrains. The behavior of a certain functional serving for optimization of the

eigenstrains with stochastically perturbed and correlated values in a laminated cylindrical structure is examined. In the

first part, a deterministic optimization of composite laminated cylinders is performed by means of the eigenstrains

produced in the layers during the fabrication process. Because fabrication of laminates is sensitive to deviation of

eigenstrain magnitudes, as shown from stochastic study, an additional minimization of the eigenstrains is introduced.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Optimization; TFA; Deterministic solution; Stochastic solution; Laminated cylinders; Composites
1. Introduction

One of the applications of composite materials is in structures subject primarily to compressive loads,

such as submersibles (Dvorak and Proch�aazka, 1996). The incentive is the relatively high compressive

strength that has been found in thick samples, e.g., 1440 MPa (209 ksi) in AS4/3501-6 carbon–epoxy system

(Daniel and Isahi, 1994). More frequently reported magnitude of about 700 MPa for the system is at-

tractive.

Both strength and stiffness of composite structures depend on the phase volume fractions, orientation of

reinforcing fibers, and stacking sequences. Moreover, these quantities can be influenced by high residual

stresses due to the fabrication process during construction of composite structure. The fiber prestress during
fabrication may be an important source, which makes it possible to control internal stresses by a properly

selected prestress distribution.

This fact is introduced into the selected computational model by virtue of eigenstrains (or internal

strains), or eigenstresses (or internal stresses), see Dvorak and Proch�aazka (1996). The idea stems from an
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original paper by Dvorak (1992), where a theory called transformation field analysis (TFA) was established.

It starts with a priori stress–eigenstress or strain-eigenstrain relation for determining influence tensors used

in the homogenization of material properties of composites. Similarly, in our study, the overall stress or

overall strain field is expressed as a linear hull of the appropriate quantities (say stresses) due to external
loading and the same quantities due to the eigenparameters. The paper (Dvorak, 1992) will be referred not

only in optimal prestressing of laminated structures, but also in many other research fields and applications,

as is pointed out in the sequel.

This paper outlines the deterministic solution of the problem of optimal prestress in laminas for stress-

free states in individual laminas (and consequently strain-free states) or an optimal distribution of stresses

(removal of unpleasant peaks of stresses) (for details see the works by Dvorak and Prochazka). The main

goal is to introduce the stochastic solution of the problem. Two main reasons of this computational concept

are:

• Undesirable errors of prestressing may be caused by the woven roving, which creates the ply directions

and prestressing.

• The fibers are shifted to the inner side of the lamina, which is being prestressed, although we suppose a

uniform distribution of prestressing throughout the thickness of this lamina.

There are other additional errors of less significance (change of temperature, human factor, etc.). The

procedure described herein should suggest how to check whether the bearing capacity of the laminate
cylinder does not increase after prestressing in comparison to non-prestressed state.

In papers (Dvorak and Proch�aazka, 1996; Dvorak et al., 1999; Srinivas et al., 1999) the optimal prestress

analysis is principally focused on submersibles; cylindrical laminates are considered. The generalized plane

strain is used. The paper by Carvelli et al. (2001) generalized the shape of such structures. It is concerned

with the structural response of a composite shell structure intended as a model of an underwater vehicle for

service in sea environment. The main objective of the research is the prediction of the collapse pressure

using both analytical expressions and linear or non-linear numerical analysis and the following comparison

with the experimental pressure obtained in off-shore tests. The structure is composed of three basic parts
with regular geometry: a cylindrical part and two conical and spherical end-closures with the same

thickness. The cylindrical shell was made up of 7 plies of E-glass woven roving with polyester resin. Various

structural analyses were conducted before performing the experiment in the sea to verify the reliability of

the analytical and numerical tools.

In (Suvorov and Dvorak, 2001), an analytical procedure is described for evaluation of the effect of re-

lease of fiber prestress, applied prior to matrix consolidation, on stress distribution in individual plies and at

free edges of laminated composite plates. Both thermal changes, piecewise uniform transformation strains

in the plies and overall mechanical loads can be considered in the analysis. The thermal and transformation
load contributions are decomposed into superpositions of certain uniform fields with mechanical loads.

Release of fiber prestress is regarded as an equivalent uniaxial compression applied at the edges of each

prestressed ply. Optimized distributions of fiber prestress are found in individual plies such that stresses in

both laminate interior and at the free edges remain within allowable limits, while the applied mechanical

load may change from zero to a certain maximum value. Specific results are found for cross-ply and quasi-

isotropic symmetric S-glass/epoxy laminates under tension. They clearly demonstrate the substantial

potential of fiber prestress in damage control and prevention in laminated composite structures.

An extension of the original paper by Dvorak (1992) can be found in Dvorak and Srinivas (1999). A
complete formal similarity of the standard techniques for estimating overall elastic properties and phase

averages of local mechanical and transformation stress and strain fields in heterogeneous materials is es-

tablished for the self-consistent and Mori–Tanaka methods, and for Walpole�s formulation of the Hashin–

Shtrikman variational bounds. Regardless of the dissimilar and often heuristic assumptions that had
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motivated the original formulations, the only essential difference between these techniques had been the

choice of the comparison medium where each phase was assumed to be embedded in the solution of the

inclusion problem. Therefore, any number of related averaging methods can be developed from other

choices made such that the resulting moduli predictions do not violate the bounds. Several new types of
admissible comparison media are proposed and evaluated for composites reinforced by spherical particles

or aligned fibers and also for porous media with spherical cavities.

The choice of the appropriate comparison media seems to be of a great interest to researchers, which are

concerned with numerical problems from the field of composite material structures. In Proch�aazka and
�SSejnoha (1996), extended Hashin–Strikman variational principles involving the eigenparameters are derived

and formulated. Moreover, the boundary integral formulation is presented to compute the influence tensors

either for estimates of bounds of material properties, or for the use in optimization processes.

Paper by Chaboche et al. (2001) deals with formulation of variational principles based on the TFA. They
involve couple of possibilities to formulate physically non-linear problems. The properties of eigenpara-

meters are used: the eigenstrain can stand for plastic strain and the eigenstress can be substituted by re-

laxation stress.

In this paper we work with eigenparameters, which are linked with prestress forces, their directions and

magnitudes. The procedure is fully described in Dvorak and Proch�aazka (1996), Dvorak et al. (1999) and

Srinivas et al. (1999). The relation between the overall stresses in the composite structure and the eigen-

stresses/eigenstrains provide a tool for optimization of bearing capacity of the laminated cylinders, their

creep, time delay in construction of large structures, annihilation of stresses in particular layers, etc. In
Appendix A, basic properties of the functionals in optimization problems discussed in this paper are shown

on a simple structure.

The previous studies have also been carried out to obtain either the optimal fiber angles for the maxi-

mum stiffness or the optimal eigenstrains for the minimum internal stresses. Those studies assume deter-

ministic conditions where both the material parameters and the applied loading have no random variations.

However, the optimal eigenstrains as well as the optimal angles of fibers in the lay-up obtained under

stochastic conditions may differ markedly from the deterministic solutions.

Recently, in Proch�aazka and N�aaprstek (1995), optimal eigenstrains or optimal eigenstresses were solved
under assumption that these quantities had stochastically perturbed and non-correlated values. In this paper

the optimal eigenstrains are sought. The cost functional similar to that in Proch�aazka and N�aaprstek (1995),

should attain its minimum under assumption that the eigenstrains have stochastically perturbed and cor-

related values.

The cost functional input parameters may describe geometry and physical properties of the structure and

also some additional properties. Non-unique solution of eigenstrains is expected in both deterministic and

stochastic formulation. In stochastic formulation, moreover, the inputs are given with some deviations

from the ideal situation required in the design stage, and the optimum of the cost functional is attained only
with certain probability. Special forms of the cost functionals are studied. The correlation is expressed by a

kind of distance function (as recommended by Cram�eer (1945) and is mostly used in applications till today)

and alternatively by an exponential function. The distance function expresses in a relatively simple way

correlation between all prestressed fibers (wires). It is very appropriate for this type of physical problems.

The numerical approach to both deterministic and stochastic solutions of the problem of optimal dis-

tribution of eigenstrains in laminated cylindrical composite structures is described. It deals with a mini-

mization of hoop and axial stresses through the structure. A discussion on examples of deterministic and

stochastic approaches with correlated eigenstrains is presented.
The relations between overall stresses and eigenstrains/eigenstresses can generally be derived by FEM or

BEM. In order to explain the behavior of the system we use a simplified axially-symmetric layered hollow

cylinder, depicted in Fig. 1(a), and the generalized plane strain, i.e., the axial deformation is equal to a

certain constant, but generally does not vanish.



Fig. 1. (a) Geometry of the body under consideration. (b) Cross-section the structure.

7112 P.P. Proch�aazka / International Journal of Solids and Structures 40 (2003) 7109–7127
As shown in Fig. 1(a), substituting the coordinate system 0x1x2x3 � 0xyz by the cylindrical system 0rhz
yields simplification of definitions of our forthcoming problems. There is one-to-one mapping between

these systems defined by well known formulas. In Fig. 1(a) r ¼ a is the radius of the internal surface of the
hollow cylinder and r ¼ b the radius of its external surface. In Fig. 1(b), a cross-section of the structure is

depicted with dimension and number of layers, which are mostly used in the forthcoming text.

Our goal is to optimize the axial and hoop stresses rzz and rhh in the layers with respect to lzz and lhh i.e.,

with respect to free hoop and radial eigenstrains. From that one can derive optimal admissible stresses and

prestrains/prestresses are the design parameters in the optimization problem.
2. Deterministic optimization of laminated cylinders

First we denote m ¼ lþ �ll and l ¼ kþ �kk, where m is the total eigenstrain tensor, �ll, is the given eigen-

strain tensor (change of temperature, plastic strain, etc.), l is the total eigenstress tensor, �kk is the given

eigenstress tensor (given prestress, relaxation stress, etc.). l and k are the design variables in the optimi-

zation formulations. In what follows, the tensors are mostly written in the standard vector form, for

simplicity.

In the first section of this chapter, basic considerations are introduced. Variational principles and op-

timization rules involving eigenparameters are defined in the second section. Note that there is a relation
between eigenstrains m and eigenstresses l, and it holds:
l ¼ �Lm; ð1Þ

where L stands for elastic material stiffness matrix. From (1), it follows immediately that one can use either

eigenstrains or eigenstresses, but not both in one formula. Simple examples show the properties of such

optimizations in Appendix A, where they make clear the sense of the introduced deterministic optimization

problems.

2.1. Computational model

The generalized plane strain is assumed (pseudo-three-dimensional problem) in the coordinate system

Ox1x2x3 and an arbitrary point in the domain is described as x ¼ fx1x2x3g. It starts with the kinematical

relations, which can be written as
eij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
; i; j ¼ 1; 2; 3: ð2Þ
Hooke�s law for an anisotropic field is considered in the form (M is the compliance matrix, M ¼ ðLÞ�1
):
eðxÞ ¼ MðxÞrðxÞ þmx; ð3Þ



P.P. Proch�aazka / International Journal of Solids and Structures 40 (2003) 7109–7127 7113
or alternatively
rðxÞ ¼ LðxÞeðxÞ þ lðxÞ: ð4Þ
Substituting r from (4) to the equations of equilibrium
orþ b ¼ 0; ð5Þ
where b is the volume weight vector, and then introducing displacement field u for strains from (2) leads to

the Navier equations for unknown displacements:
oðLoTuÞ � oðLmÞ þ b ¼ 0 in X; ð6Þ
or alternatively
oðLoTuÞ þ olþ b ¼ 0 in X; ð7Þ
where X is the domain of the body under consideration, T denotes transposition. In Eqs. (5)–(7) we
denoted:
o ¼

o
ox1

0 0 0 o
ox3

o
ox2

0 o
ox2

0 o
ox3

0 o
ox1

0 0 o
ox3

o
ox2

o
ox1

0

2
64

3
75: ð8Þ
The boundary conditions for (6) and (7) are defined as
u ¼ �uu on Cu;

p ¼ �pp on Cp;

pi ¼ rij; nj; i; j ¼ 1; 2; 3 on Cp;

n ¼ ðn1; n2; n3Þ;

ð9Þ
where the barred quantities are prescribed, n is the unit outward normal.

In a cylindrical axisymmetric case, it is useful to introduce the cylindrical coordinates 0rhz, see Fig. 1(a).
For axisymmetric case, it holds ðx ¼ fr; h; zgÞ:
er ¼
our
or

; eh ¼
ur
r
; ez ¼

ouz
oz

¼ const:;

erh ¼ erz ¼ ehz ¼ 0:

ð10Þ
The displacement vector and strain and stress tensors can be written in a contracted notation as
u ¼ fur; uh; uzgT;
e ¼ fer; eh; ezgT; r ¼ frr; rh; rzgT:

ð11Þ
The only one equation of equilibrium holds (other equations are fulfilled identically):
rr � rh

r
þ orr

or
¼ 0: ð12Þ
The results in this paper are attained for anisotropic materials ðMij ¼ MjiÞ. For axially orthotropic case
i; j ¼ r; h; z the components of the compliance matrix may be expressed in terms of elasticity moduli and

Poisson�s numbers:
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M ¼
Mrr Mrh Mrz

Mhh Mhz

symm: Mzz

2
4

3
5 ¼

1
Er

� mrh
Eh

� mrz
Ez

� mhr
Er

1
Eh

� mhz
Ez

� mzr
Er

� mzh
Eh

1
Ez

2
64

3
75: ð13Þ
Since the domain is denoted by X, the disjoint locally homogeneous but generally anisotropic sub-

domains (layers) are denoted as Xk, k ¼ 1; . . . ; n, numbered from inner to outer layer. In each subdomain,

the Hooke�s law holds:
ekðxÞ ¼ MkrkðxÞ þmkðxÞ; k ¼ 1; . . . ; n; ð14Þ
or alternatively
rkðxÞ ¼ LkekðxÞ þ lkðxÞ; k ¼ 1; . . . ; n; ð15Þ
where Lk and Mk ¼ ðLkÞ�1
are, respectively, the material stiffness and the compliance in subdomains k, rk

are the stresses and ek are the strains, mk ¼ lk þ �llk; �llk are the prescribed eigenparameters creating an in-

dependent transformation field in Xk (due to change of temperature, current plastic state, creep, etc.), lk are

free design tensors (representing prestrain in our case). One can similarly split eigenstresses lk ¼ kk þ �kkk in
Xk to the free and prescribed components.

The relations lk ¼ �Lkmk, mk ¼ �Mklk, hold, so that (14) and (15) may be modified (no summation over
k):
ekðxÞ ¼ MkrkðxÞ �MklkðxÞ;
rkðxÞ ¼ LkekðxÞ � LkmkðxÞ:

ð16Þ
The equilibrium between adjacent layers is fully discussed in Dvorak and Proch�aazka (1996). We consider

the interfacial conditions in the form of continuous radial displacements and the equilibrated radial
tractions.

2.2. Extended Lagrange’s principle for laminate cylinders

For completeness and also as an example we start with formulation of Lagrange�s variational principle
for the problem (6) and (7). From this principle, it follows that for the given �pp on Cp, the volume weight b in

X and the eigenstrain field m in X the solution u 2 V of (6) and (7) is a minimum of the following energetic

functional:
PpðuÞ ¼
1

2

Z
X
ðe�mÞTðxÞrðxÞdXðxÞ �

Z
X
bTðxÞuðxÞdXðxÞ �

Z
Cp

�ppTðxÞuðxÞdCðxÞ;

V ¼ fu; u prescribed on Cug: ð17Þ
The functional (17) can be rewritten as
Ppðu; lÞ ¼
1

2

Xn
k¼1

Z
Xk

½ekðxÞ � lk � �llkðxÞ�TLk½ekðxÞ � lkðxÞ � �llk�dXkðxÞ �
Z
X
bTðxÞuðxÞdXðxÞ

�
Z
C

�ppTðxÞuðxÞdCpðxÞ; ð18Þ
where Xk is the domain of lamina number k. Additional constraint conditions have to be introduced be-

cause of independent behavior of particular laminas, which is not involved in the principle. From this point

of view the above formulation is not practical. In what follows we use the ideas of transformation field
analysis. They enable us to write the principle in a more compact way and the optimization is then
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formulated in a comprehensive form. Using the principle (17) and (18) the formulation of optimization is

principally cumbersome.

From (18), it is obvious that the additional conditions involve equilibrium and compatibility between

layers. This is why we concentrate our attention on expressing physical quantities in the general laminated
structure.

Let us denote by h�i the volume averages of the functions. A simplification is introduced: the distribution

of eigenparameters in one layer is uniform, i.e., lkðxÞ � hlki, k ¼ 1; . . . ; n.
Suppose that in the first m laminas Xk, k ¼ 1; . . . ;m the eigenstrains lk are independent. In each lamina

we successively introduce mutually independent unit eigenstrains hlk
j i

1
, j ¼ 1; . . . ; 6, k ¼ 1; . . . ;m. From

that, three components of displacements and six components of stresses and six components of strains are

obtained in each lamina i ¼ 1; . . . ; n, i.e., influence tensors are univalently defined by hlk
j i

1
. Di

k � Di
akj is the

influence function tensor, the appropriate components of which in Di
akj are the strain eia responses to the unit

impulses hlk
j i

1 ¼ 1, Fi
k is the influence function tensor created in a similar manner for stress responses to the

unit impulses hlk
j i

1 ¼ 1, and eventually Ui
k is an influence function tensor for displacement responses.

The influence tensors depend on constant elastic moduli, which are influenced by given volume fractions

of the phases in the individual layers. Then the volume fractions cannot affect the optimal prestressing.

The variables �eeiðxÞ, �rriðxÞ, �uuiðxÞ in what follows are caused due to external loading and of prescribed

eigenstrains. In this way one can split the elastic strain as
eiaðxÞ ¼ e�i
a ðxÞ þ

X6
j¼1

Xm
k¼1

Di
akjðxÞhlk

j i; i ¼ 1; . . . ; n; a ¼ 1; . . . ; 6; ð19Þ

eiðxÞ ¼ �eeiðxÞ þ
Xm
k¼1

Di
kðxÞhlki; i ¼ 1; . . . ; n: ð20Þ
Similarly, it holds the relation between the stresses and the eigenstrains:
ri
aðxÞ ¼ �rri

aðxÞ þ
X6
j¼1

Xm
k¼1

F i
akjðxÞhlk

j i; i ¼ 1; . . . ; n; a ¼ 1; . . . ; 6; ð21Þ
or in a matrix form
riðxÞ ¼ �rriðxÞ þ
Xm
k¼1

Fi
kðxÞhlki; i ¼ 1; . . . ; n: ð22Þ
Eventually, the relation displacements and eigenstrains can be written as
uiaðxÞ ¼ �uuiaðxÞ þ
X6
j¼1

Xm
k¼1

Ui
akjðxÞhlk

j i; i ¼ 1; . . . ; n; a ¼ 1; . . . ; 6; ð23Þ
or
uiðxÞ ¼ �uuiðxÞ þ
Xm
k¼1

Ui
kðxÞhlki; i ¼ 1; . . . ; n: ð24Þ
In every optimization problem, the admissible set of eigenstrains should obey some restricted values of

components of eigestrain tensor. This is an impact of bearing capacity of fibers, exclusion of tensile stresses

in fibers, etc. The set is denoted by O and defined as
O ¼ fl; hll;i
a i6 hli

ai6 hlu;i
a i; i ¼ 1; . . . ;m; a ¼ 1; . . . ; 6g ð25Þ
for hll;i
a iahlu;i

a i, i ¼ 1; . . . ; n, a ¼ 1; . . . ; 6 given.
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Let the matrices Fk and Dk and the barred quantities be given from previous computations. The barred

variables follow from linear computation. They represent responses to external loading and to a given

transformation filed. The matrices are influence tensors, their components are obtained from unit eigen-

strain impulses in layers under assumption that there is no external load. Without loss of generality let us
assume the volume weight to be zero. Then the following Lagrange�s principle can be formulated.

Our aim is to find stationary point of Pp on V and the class of functions hli 2 O, where
PpðukðxÞ; hljiÞ ¼ 1

2

Xn
k¼1

Z
Xk

�eekðxÞ
Xm
j¼1

Dk
j ðxÞhlji

" #T
Lk �eekðxÞ
"

þ
Xm
j¼1

Dk
j ðxÞhlji

#
dXkðxÞ

�
Z
C

�ppTðxÞuðl; xÞdc: ð26Þ
As shown in Appendix A, where a simple laminated structure is treated, this problem leads to annihi-

lation of stresses in the layers where the free eigenstrains are introduced. The above formulation plays very

important role in numerical applications, as we have only one functional, which depends on two kinds of
functions: the minimization with respect to displacement field solves elasticity problem and stationary point

of eigenparameters gives the above-mentioned annihilation of stresses. The problem complies with Chapter

6 in Dvorak et al. (1999), where a problem of optimal strain distribution in the plane created by 0hz co-
ordinations is sought. For example, solving this problem an optimal conditions for placement of insulation

in the mentioned layer are attained. Assuming that the stresses in radial direction are negligible, from

Hooke�s law one obtains that not only stresses ðrh; rzÞ, but also strains eh, ez are equal to zero.
2.3. Optimal stress distribution

In this section our aim is to find the minimum Pr on a class of functions hli 2 O (see the previous

section), where
Prð�rrkðxÞ; hliiÞ ¼ 1

2

Xn
k¼1

Z
Xk

rTðxÞrðxÞdXkðxÞ

¼ 1

2

Xn
k¼1

Z
Xk

�rrkðxÞ
"

þ
Xm
i¼1

Fk
i ðxÞhlii

#T
�rrkðxÞ
"

þ
Xm
i¼1

Fk
i ðxÞhlii

#
dXkðxÞ: ð27Þ
Since the latter problem is non-linear (the stresses and influence tensors are position-dependent), the

quantities in the relations (21) and (22) can be substituted by their averages. Then the functional (27) reads:
Prðhrki; hliiÞ ¼ 1

2

Xn
k¼1

Z
Xk

hriThridXkðxÞ

¼ 1

2

Xn
k¼1

h�rrki
"

�
Xm
i¼1

hFk
i ihlii

#T
h�rrki
"

�
Xm
i¼1

hFk
i ihlii

#
meas Xk; ð28Þ
where ‘‘meas’’ means the measure of the argument. This simplification turns the above functional to a

function of the free eigenstrains.

Differentiating Pr from (28) by hls
ci leads to the following conditions (in detailed form):
X6
a¼1

Xn
k¼1

h�rrk
ai

 
þ
Xm
i¼1

X6
b¼1

hF k
iabihli

bi
!
F k
sac meas Xk ¼ 0: ð29Þ
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From (29) we get a system of linear algebraic equations:
Ascibhli
bi ¼ bsc; i; s ¼ 1; . . . ;m; b; c ¼ 1; . . . ; 6; ð30Þ
where
Ascib ¼
X6
a¼1

Xn
k¼1

hF k
iabihF k

saci meas Xk;

bsc ¼
Xm
a¼1

Xn
k¼1

h�rrk
aihF k

saci meas Xk:
The above optimization problem leads to maximization of bearing capacity of the laminated structure.

This can be done by an appropriate prestrain in laminas. The way of introduction of such a prestrain in

particular laminas and the process of fabrication is described in Dvorak et al. (1999) and Srinivas et al.

(1999).

As discussed in Appendix A, the optimization of total energy deals with a comprehensive formulation of
mechanical problem of laminated structures; the eigenparameters cause annihilation of stresses in layers

where they are introduced. The optimization of stresses leads to uniform distribution of stresses through the

thickness of the structure under consideration in that case when m6 n� 1 where n is the total number of

layers and m is the number of layers with introduced eigenstrain.

Similarly to the restrictions (25) on eigenstrains, the admissible set can be stated for stresses (e.g.,

strengths). Then the lagrangian multipliers or penalty method can be applied. Using a mathematical

treatment, it can be proved that the Hessian of the system is positively definite and consequently, Newton–

Raphson method may be used for this non-linear system. This is out of scope of this paper.

2.4. Applications

Consider a balanced laminate hollow cylinder composed of 5 layers of equal thicknesses, which are

arranged in a repeating (0/�60/902) lay-ups. The layers are made of AS4/3501-6 carbon–epoxy composite

whose properties are the same for each layer [MPa]: Lrr ¼ 14240, Lrh ¼ 5730, Lrz ¼ 6506, Lhh ¼ 94100:1,
Lhz ¼ 11699:6, Lzz ¼ 41200:8. The external hydrostatic loading is applied. Tractions ph ¼ 20 MPa in the

h-direction and pz ¼ 20 MPa in the z-direction. Inner radius is 4.5 m, outer radius is 5 m. The length of the

cylinder is not important in our case.

Fig. 2 describes the distribution of stresses rh and rz throughout the thickness in case of no eigenstrains.

Fig. 3 show the distribution of stresses due to unit eigenstrains applied in the third layer, for example. In
these figures rh

h � hrh
hi means the hoop stress resulting from hlhi ¼ 1, rz

z � hrz
zi stands for the axial stress
Fig. 2. Distribution of the stresses without eigenstrains.



Fig. 3. Stress distribution due to unit eigenstrains.
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resulting from hlzi ¼ 1, rz
h � hrz

hi stands for the axial stress due to hlzi ¼ 1, and eventually rh
z � hrh

z i stands
for the hoop stress due to unit axial eigenstrain.

Applying Lagrange�s principle, the eigenstrains belonging to the optimal state are: lh ¼ �2:4324� 10�3

and lz ¼ �2:864� 10�3. The distribution of stresses throughout the thickness of the structure is illustrated

in Fig. 4 for both axial and hoop stresses.

The absolute maximum hoop stress appears in the first layer r1
h ¼ �260:3026 MPa. Because the problem

is linear, the strength 700 MPa envisaged in the beginning of this paper is reached for lh ¼ �6:5412� 10�3

and lz ¼ �7:702� 10�3. If the prestraining is higher than the above values then the bearing capacity would
be exceeded.

The previous results can partly be used in the optimization of stresses over the entire structure. Studying

the above described laminate hollow cylinder with 5 equidistant layers yields a couple of possibilities about

what and how to pose the optimization problems. One can optimize either the hoop stress or the axial stress

or both. As design parameters can serve either the hoop eigenstress or the axial eigenstress or both. To start

with, we concentrate our attention on optimization of the hoop stresses with the hoop eigenstrains as the

design parameters. For a simple structure it is proven in Appendix A that the number of design parameters
Fig. 4. Distribution of the stresses with eigenstrains introduced in the layer 3.



Fig. 5. Distribution of the hoop eigenstrains lh � 10�5 for the optimal hoop stresses.

Fig. 6. Distribution of the hoop eigenstrains lh � 10�5 and lz � 10�5 for the optimal stresses.
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m is restricted to the number of layers n minus one. It means that if the hoop stresses are optimized, at most
n� 1 eigenparameters can be introduced, for example. If both hoop and axial stresses are optimized, the

number of both hoop and axial eigenstrains cannot exceed n� 1.

In Fig. 5, distributions of the hoop eigenstrains are shown in the problem of optimization of the hoop

stresses. Two cases are considered: first, the fifth layer is dropped out and then the first layer is excluded

from computation. It is obviously seen from the figure that a monotonous character of distributions of the

hoop stresses is reached. Consequently, the negative eigenstrains are attained in the first case and also in

the cases where in abandoned layer a negative high enough eigenstrain is prescribed. The distribution of the

eigenparameters is almost uniform in that case.
Starting with this experience, a special choice of eigenstrains is introduced when optimizing both hoop

and axial stresses. The result is shown in Fig. 6. The optimal hoop stress is )200.00 MPa and the optimal

axial stress is )105.26 MPa. Taking into account the optimal prestrain to be introduced into the cylinder

layers with a high accuracy (the fibers are carefully wound up, low matrix porosity is assumed, etc.), the

strength of 700 MPa can allow 3.5 times higher external hydraulic pressure ð700=200 ¼ 3:5Þ.
3. Statistic properties of the cost functionals

This section deals with the behavior of a functional serving for optimization of eigenstrains with

stochastically perturbed and correlated values in a laminated cylindrical structure from composite mate-

rials. For expressing the relation between stresses and eigenstrains, the equations derived in the previous

sections are used, namely (21) and (22). As a model, the optimal eigenstrains are sought, for which the cost

functional Pr in (27) attains its minimum. The eigenstrains have now stochastically perturbed and cor-
related values.
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3.1. Basic considerations

As in the previous sections, consider a laminate structure, which in undeformed state occupies the do-

main X. Again, the layers are represented by Xi, i ¼ 1; . . . ; n, n is the number of layers. The geometry and
denotation of the problem is the same as that depicted in Fig. 1(a) and (b).

For simplicity, assume that there is an external axisymmetric hydrostatic loading p along the entire

boundary of the structure. The stress rk at an arbitrary point x of the domain Xk may be expressed as a

superposition of the stress �rrk at x 2 Xk due to the external loading p and a linear hull of the volume average

eigenstrains hlii applied in the layers Xi, i ¼ 1; . . . ;m, see (21) and (22).

The optimization problem then starts with the functional Pr, which is defined in (28), for simplicity.

Let us consider deviations dj from hlij; the latter are computed from the deterministic problem. From

this, the functional Pr in (28) turns to the functional
Uðhlii þ diÞ ¼
1

2

Xn
k¼1

hriThri meas Xk

¼ 1

2

Xn
k¼1

h�rrki
"

þ
Xm
i¼1

hFk
i iðhlii þ diÞ

#T
h�rrki
"

þ
Xm
i¼1

hFk
i iðhlii þ diÞ

#
meas Xk: ð31Þ
In order not to complicate the index notation, the relations needed for stochastic estimates are derived

only for the hoop direction. The values of the hoop stresses are principally greater than the radial stresses,

which are completely excluded from the optimization. Involving the axial stresses would not make any

trouble. Consequently, the axial eigenstrains are excluded from the next consideration without loss of

generality. This means that instead of hrii we write hri
hhi and instead of hlii, hli

hhi is used. We recall again

that the generalization to both axial and hoop directions is easy.

The functional (31) can then be simplified as
Uðhli
hhi þ diÞ ¼

1

2

Xn
k¼1

hrk
hhi

Thrk
hhi meas Xk

¼ 1

2

Xn
k¼1

h�rrk
hhi

"
þ
Xm
i¼1

hF k
i iðhli

hhi þ diÞ
#T

h�rrk
hhi

"
þ
Xm
i¼1

hF k
i iðhli

hhi þ diÞ
#

meas Xk; ð32Þ
where di are now deviations of the design hoop eigenstrains.

In what follows we assume that the deviations of the design parameters from their nominal values are
not too large, they are centered and moreover, the cost functional in its domain is a continuous and suf-

ficiently smooth function of these parameters. As we study the problem in some distance from the sta-

tionary point, the linear approximation is not sufficient and we have to study the original quadratic

functional (32).

In the neighborhood of a selected point (the deterministic optimal solution) hl̂lk
hhi, the functional (32) at

the point hlk
hhi may be expressed in Taylor�s series as
Uðhli
hhi þ diÞ ¼ Uðhl̂lhhiÞ þ

Xm
i¼1

sidi þ
Xm
i;j¼1

qijdidj; ð33Þ
where Uðhl̂lhhiÞ is the value of the functional in case of nominal values or the mathematical means of

the parameters, in our study deterministic optimal solution; s ¼ jsij, q ¼ jqijj, the vector or matrix of the

parameters of the approximate function,
si ¼
oUðhl̂lhhiÞ
ohli

hhi
;
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qij ¼
1

2

o2Uðhl̂lhhiÞ
ohli

hhiohl
j
hhi

; i; j ¼ 1; . . .m;
n is the number of layers; m, the number of statistical variables (parameters), here the number of inde-

pendent eigenstrains in the set hli
hhi, i ¼ 1; . . . ; n.

From (32), it follows that
si ¼ 2
Xn
a¼1

hF a
i i h�rra

hhi
"

þ
Xm
b¼1

hF iabhl̂l
b
hhi
#
meas Xa;

qij ¼
Xn
a¼1

hF a
i ihF a

j i meas Xa:

ð34Þ
First, the mathematical mean of the functional is computed, i.e., in (33) apply the operator of the

mathematical mean Ef�g:
EfUðhlhhiÞg ¼ Uðhl̂lhhiÞ þ
Xm
i;j¼1

qijKij; ð35Þ
where si ¼ 0, i ¼ 1; . . . ; n, and Kij is the correlation of the parameters with perturbations; square matrix

n� n.
A natural requirement now is to find such a mean EfUðhlhhiÞg that does not exceed the value of Uð0Þ,

i.e., the prestraining does not worsen the stress state in the considered cylinder prior to introduction of the
eigenstrains. It is worth noting that for non-correlated deviations the difference
Uð0Þ � Uðhlhhi þ diÞ > 0: ð36Þ
In the case of correlated deviations one can proceed as follows.

As is supposed in the beginning of this chapter, a model example is considered for the functional Pr. For

this problem, it holds:
EfUðhlhhiÞg ¼ Uðhl̂lhhiÞ þ
Xn
i¼1

Xm
k;l¼1

hF i
kiKklhF i

l i meas Xi: ð37Þ
Note that if the perturbances of parameters are statistically independent, (37) becomes
EfUðhlhhiÞg ¼ Uðhl̂lhhiÞ þ
Xm
i¼1

qiiDii; ð38Þ
where Dii is the diagonal matrix m� m of parameter dispersions.

If the functional attains its minimum at the point hl̂lhhi (deterministic optimal point), each qii is positive.
As, in the same time, the dispersions Dii are also positive, it has to hold:
EfUðhlhhiÞg > Uðhl̂lhhiÞ: ð39Þ
From that it follows that any uncertainty in the parameters may only worsen the optimal state, as the

mathematical mean point of the process UðhlhhiÞ is always greater than its value at the optimal point hl̂lhhi.
Now, for correlated values of the deviations of eigenstrains it has to hold instead of (36):
Uð0Þ � EfUðhlhhiÞg > 0: ð40Þ
From the latter inequality one can obtain certain estimates on the admissible values of deviations di. In
the examples the correlation matrix of the perturbations is selected in the most used form, namely in the

form of distance function. An alternative exponential function completes our study.
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3.2. Application

The cylindrical laminate composite structure identical with that considered in the previous sections,

which is situated in the coordinate system 0rhz, is considered. Our aim is to find the reasonable distribution
of deviations di from the optimized eigenstrains in the individual layers. Recall that the outer hydraulic

compressive load p ¼ �20 MPa, the thickness of the structure is 50 cm, the outer radius is 4 m, and the

structure is built up from 5 equidistant layers. The stiffness coefficients of the AS4/3501-6(O12/9038)S lam-

inate are: Lrr ¼ 14:240 GPa, Lrh ¼ 5:73 GPa, Lrz ¼ 6:506 GPa, Lhh ¼ 112:847 GPa, Lhz ¼ 5:73 GPa,

Lzz ¼ 49:792 GPa.

As the hoop stresses possess the prevailing meaning in comparison with the other components of the

stress tensor, only these quantities are taken into account. The hoop eigenstrains are the only arguments of

the cost functional in the optimization problems.
The generalized plane strain (Dvorak and Proch�aazka, 1993), is assumed in the computation. Taking use

of the optimization procedure for the minimization of the cost functional (3) with the hoop eigenstrains

applied in the layers 1; . . . ; 4, the average compressive hoop stress in the cylinder attains the value of )200
MPa and Uðl̂lÞ ¼ 447:20, while Uð0Þ ¼ 447:40. The initial average hoop stresses in the layers are computed

as
h�rrhhi ¼ ð�208:90 � 203:68 � 199:28 � 195:60 � 192:56ÞT MPa
and the resulting optimal eigenstrains are
hl̂lhhi ¼ ð�1:864 � 1:274 � 0:772 � 0:350ÞT � 10�4:
The influence matrix (tensor of the second order) is
hFi ¼

�7:235 1:926 1:909 1:898 1:893
1:885 �7:293 1:874 1:864 1:858
1:829 1:835 �7:338 1:836 1:831
1:781 1:787 1:798 �7:370 1:809
1:740 1:746 1:757 1:772 �7:391

2
66664

3
77775� 104
while the coefficients of approximation of the cost functional are given in the following table:

Let us assume that the correlation matrix be given by virtue of the distance function: Kij ¼ K0jri � rjj, where
ri is the radius of the central surface of the layer i. Then Kij ¼ 0:1 K0ji� jj, and K0 is some real, which will

be calculated from the condition (40). Easy calculation shows that (40) can be written as

qij½�109�
18.909 )5.084 )4.995 )4.938
)5.084 19.526 )5.028 )4.972
)4.995 )5.028 20.084 )5.034
)4.938 )4.972 )5.034 20.580
Uð0Þ � ðUðhl̂lhhi þ K0 � 1:9891� 1010ÞÞ0:
This implies that in our example K0 < 10�11.

Because in fifth layer no prestrain is introduced, d5 ¼ 0. Comparing the nature of formulas (33) and (35),

the deviations depend on K0 and the correlation function (matrix). One possible solution is d1 ¼ d2 ¼
d3 ¼ d4 ¼ 10�6. Another admissible solution is d1 ¼ 11:63� 10�7, d2 ¼ 8:52� 10�7, d3 ¼ 5:68� 10�7,
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d4 ¼ 2:84� 10�7. The first deviations follow from the assumption of their uniform distribution and the

second one from the linear assumption.

Let us assume another correlation matrix: Kij ¼ K0 exp jri � rjj. Then Kij ¼ K0 expð0:1ji� jjÞ, and

K0 < 10�12, using the same approach as before. For this correlation matrix we get even stronger require-
ment on values of the deviations. For the uniform distribution it holds: d1 ¼ d2 ¼ d3 ¼ d4 ¼ 4:52� 10�7,

and the linear distribution provides: d1 ¼ 5:28� 10�7, d2 ¼ 3:96� 10�7, d3 ¼ 2:64� 10�7, d4 ¼ 1:32�
10�7. In this case, more natural and accurate distribution appears to be an exponential one: d1 ¼ 3:7� 10�7,

d2 ¼ 1:37� 10�7, d3 ¼ 0:51� 10�7, d4 ¼ 0:19� 10�7.
4. Conclusions

In this paper both deterministic and stochastic approaches to optimal prestresses of cylindrical lami-

nated composite structures are discussed. The generalized plane strain is used as a pseudo-three-dimen-

sional numerical model for solving the problem. The optimization of stresses with the eigenstrains serving

as design parameters is explained on a simple example in Appendix A. First, hoop directions are preferred,

while next also both hoop and axial directions are taken into account. The radial stresses and eigenstrains

are neglected. The stochastic approach enables one to assess admissible deviations in prestressing to reach
at least the same bearing capacity than that obtained from the model without prestressing.
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Appendix A

In this paper it has been shown that a minimization of the variance of stresses in laminate cylinder leads
to unified distribution of stresses along the thickness of a cross-section of the structure, in the case

m ¼ n� 1, i.e., if the number m of prestressed layers is less than the number of all layers n minus one. There

is a unique solution k, if the number of components kk, k ¼ 1; . . . ;m fulfills the inequality m6 n� 1.

We prove the validity of the above-mentioned assertion on a simple beam structure (axial cut from a

laminate cylinder), generally with different layer thickness and different material properties––see Fig. 7. At

the left edge the beam is clamped while at the right edge x ¼ L (L is the length of the beam) a uniformly

distributed load with a resultant F is applied. Only axial movement is admissible, i.e., both strain and stress

occur exclusively in axial direction. The other components of both stress and strain tensors vanish.
Fig. 7. Geometry of the beam.
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Assumption. Generalized plane strain is considered, i.e., e1 ¼ e2 ¼ � � � ¼ en ¼ e ¼ const. From that

uðxÞ ¼ LeðxÞ.

Under this assumption the Hooke�s law in each layer reads:
ri ¼ Eiðe� liÞ; li ¼ � ki

Ei
; i ¼ 1; 2; . . . ; n; ðA:1Þ
so that
ri ¼ Eieþ ki; i ¼ 1; 2; . . . ; n: ðA:2Þ
Denote Ni the force in the layer i. The balance condition yields:
N 1 þ N 2 þ � � � þ Nn ¼ F )
Xn
j¼1

bjEjeþ
Xn
j¼1

bjkj ¼ F : ðA:3Þ
The overall deformation and the stresses in the layers then are
e ¼
F �

Pn
j¼1 b

jkjPn
j¼1 b

jEj
ri ¼ Ei

F �
Pn

j¼1 b
jkjPn

j¼1 b
jEj

þ ki; i ¼ 1; 2; . . . ; n: ðA:4Þ
The internal energy Eint is defined as (see chapter on Lagrange�s principle):
Eint ¼
1

2

Z
X
W 2 dX ¼ 1

2

Xn
i¼1

Z
X
Eiðe� liÞ2 dX ¼ L

2

Xn
i¼1

Eibi e

�
þ ki

Ei

�2

¼ L
2

Xn
i�1

bi
ðriÞ2

Ei
: ðA:5Þ
For the sake of completeness note that the complementary internal energy E�
int can be written as
E�
int ¼

1

2

Z
X
ðW �Þ2 dX ¼ 1

2

Xn
i¼1

2rili

 
þ ðriÞ2

Ei

!
¼ L

2

Xn
i¼1

bi

Ei
½ðri � kiÞ2 � ðkiÞ2�: ðA:6Þ
The meaning of the extended densities W and W � of the internal energies in 1D is shown in Fig. 8.

Recast stresses from (A.4) as
ri ¼ �rri þ
X
j¼1

Dijk
i; �rri ¼ EiFPn

k¼1 b
kEk

Dij ¼ dij �
bjEiPn
k¼1 b

kEk
; ðA:7Þ
where dij is Kronecker�s delta, �rri is the stress only due to the external load F and Dij is the influence tensor

(cf. Dvorak and Proch�aazka, 1996).
Let us see what happens when we optimize the structure of the beam in the sense of minimum of the

variance of stresses. Then the functional Pr is
Fig. 8. Primary and dual densities of internal energies.
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Pr ¼
Z
X
rðxÞ2 dx ¼ L

Xn
i¼1

biðriÞ2 ¼ L
Xn
i¼1

bi �rri

 
þ
Xn
j¼1

Dijk
j

!2

: ðA:8Þ
It is worth noting that if the stiffnesses of layers bi=Ei are uniform for every admissible i then the

functional to be minimized is exactly equal to internal energy in Lagrange�s principle.
The condition of minimum of Pir leads to a system of linear equations for unknown kj:
Xn
i¼1

Xn
j¼1

biDijDikk
j ¼ �

Xn
i¼1

bi�rriDik; k ¼ 1; . . . ; n: ðA:9Þ
For n ¼ 2 we obtain a system of equations:
b1D11D11 þ b2D21D21 b1D11D12 þ b2D21D22

b1D12D11 þ b2D21D22 b1D12D12 þ b2D22D22

� �
k1

k2

� �
¼ b1D11 b2D21

b1D12 b2D22

� �
D11 D21

D12 D22

� �
k1

k2

� �

¼ � b1D11 b2D21

b1D12 b2D22

� �
�rr1

�rr2

 !
: ðA:10Þ
It can easily be proved that
det
D11 D21

D12 D22

� �
¼ 0; ðA:11Þ
consequently, the eigenstresses are mutually dependent. It can also be shown that the rank of this matrix is

equal to 1. This implies that there is an infinite number of solutions. This result complies with the physical

meaning of the eigenstresses: we cannot prestress the structure in such a way that the overall stresses
disappear because of equilibrium of internal and external forces.

System (A.11) may now be recast as
b1D11 b2D21

b1D12 b2D22

� �
�rr1 þ D11k

1 þ D12k
2

�rr2 þ D21k
1 þ D22k

2

 !
¼ b1D11 b2D21

b1D12 b2D22

� �
r1

r2

� �
¼ 0

0

� �
: ðA:12Þ
Substituting from (A.7) to (A.12) yields:
b1b2E2 �b2b2E2

�b1b2E1 b1b2E1

� �
ðA:13Þ
and the first column is obviously linearly dependent on the second column. From this assertion immediately

follows that stresses are the same for the arbitrary areas, thicknesses, and material parameters of the layers

of the structure. The magnitude of the stresses follows from the equilibrium between the external and
internal forces.

For n > 2 we generally get (A.9). It is sufficient to prove that
det

D11 D12 ; . . . ; D1n

� � ; . . . ; �
� � ; . . . ; �
� � ; . . . ; �

Dn1 Dn2 ; . . . ; Dnn

2
666664

3
777775 ¼ 0: ðA:14Þ
This can be done by mathematical induction. Similarly, the rank of the above matrix is n� 1.
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For n > 2 a similar nature of Eq. (A.12) for n > 2 holds valid as
Xn
j1

bjDjir
j ¼ 0; for each i ¼ 1; . . . ; n: ðA:15Þ
Moreover, since it holds
biDii ¼ �
X
j 6¼i

biDji; for each i ¼ 1; . . . ; n ðA:16Þ
it immediately follows that according to (A.9) and (A.14), i.e., in the case that the number m of fkigmi¼1 is
equal to n� 1, then r1 ¼ r2 ¼ � � � ¼ rn.

From the above study it easily follows that even in one layer the eigenstress (or alternatively eigenstrain)

can possess certain given value; the prestressing in the other layers are then calculated from optimization.

Moreover, the transformation field can be prescribed together with one free eigenparameter and still op-

timal distribution of stresses is computed from minimization of the functional Pr in (A.8), which is

equivalent to that from the second chapter. The stresses in the individual layers do not change in value

although the prestressing can change.

Furthermore, we are going to show another one type of functional, which has been discussed in the
previous text. It leads to zero stresses in selected layers, and subsequently it suppresses strains in these

layers. The reason of this optimization is the same as in the sixth chapter of the publication by Dvorak et al.

(1999).

This can be of interest to designers, who use eigenparameters as an optimization tool. The above denoted

quantities and derived formulas will also be used in what follows.

The total strain energy, following Lagrange�s principle, in our case is
P1 ¼ Eint � Eext ! minimum; ðA:17Þ
where Eext is the external energy defined as
Eext ¼ Fu ¼ FLe ¼ FL
F �

Pn
j¼1 b

jkjPn
j¼1 b

jEj
: ðA:18Þ
After differentiating P1 by kk, and with respect to (A.7) and (A.18) gives:
Xn
i¼1

bi

Ei
riDik þ F

bkPn
j¼1 b

jEj
¼ 0: ðA:19Þ
Let us rearrange the first term of the left hand side as
Xn
i¼1

bi

Ei
riDik ¼

Xn
i¼1

bi

Ei
ri dik

 
� EibkPn

j¼1 b
jEj

!
¼ bk

Ek
rk �

Pn
i¼1 b

ibkriPn
i¼1 b

iEi
¼ rk

Ek

�
�
Pn

i¼1 b
iriPn

i¼1 b
iEi

�
bk: ðA:20Þ
Since
Pn

i¼1 b
iri ¼ F , from this and (A.19) we obtain that in the layer k the stress is equal to zero. Similarly,

if into m layers eigenparameters are introduced, stress-free state is obtained in these layers. As the equi-

librium condition must be obeyed, the number of free eigenstresses cannot exceed n� 1 again.

Conclusion: Minimization of the variance of stresses leads to a unification of stresses along the thickness

of the beam, in the case m ¼ n� 1. There is a unique solution k when the number of components kk,
k ¼ 1; . . . ;m fulfills m6 n� 1.

Minimization of total strain energy with respect to the components of tensor k leads to zero stresses at
each layer where the eigenstress (or eigenstrain) is introduced. The admissible number of free eigenstresses

is n� 1 again.
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